The A-DAC Principle: A New Concept in Oncology Treatment

What is the A-DAC Principle?
The A-DAC (alkylating deacetylase) principle is a new approach in chemotherapy that uses fusion molecules to combine an alkylating moiety with a pan-histone deacetylase (HDAC) inhibitor within the same treatment to simultaneously damage DNA and block damage repair.1,2,3

This is a departure from the traditional method of combining several chemotherapy agents with different modes of action in order to improve efficacy, often resulting in increased toxicity.1 The A-DAC principle was designed to combine chemotherapy with a targeted approach in one molecule to create synergy and to increase efficacy without compromising tolerability.1

What is a Fusion Molecule?
Fusion molecules combine two validated anti-cancer modes of action in one molecule in order to synergise and improve upon the efficacy of the single agents. Ideally, these include a chemotherapy and a targeted agent fused into one molecule.4

EDO-S101 is a representative of the A-DAC principle, and combines the active moieties of the alkylating agent and the HDAC inhibitor through fusion technology.

When used in malignant cells:1

- **Alkylating agents** cause breaks in the DNA that result in cell death2
- **HDAC** inhibition suppresses gene transcription and prevents the growth of cancer cells and may influence control mechanisms that protect against cell death.3

Rationale for Development
A fusion molecule offers true bi-functionality and synergy in antineoplastic activity.5,6

The A-DAC principle was proposed to exploit a synergistic mode of action that may overcome the difficulties associated with the combined use of two separate entities.1

Successful treatment of cancer is often hindered by the development of resistance to the therapy. HDAC enzymes are overexpressed in some cancers inducing cell proliferation and resistance.1,5

A-DAC Fusion Molecule
The new chemical entity, EDO-S101, is the fusion of bendamustine with vorinostat.1 Both are well established anticancer agents with extensive properties.2,3 Bendamustine has been shown to regulate pathways for DNA repair and cell death, while vorinostat blocks the cell cycle and division preventing further growth in a broad spectrum of cancer cells, with little toxicity to normal cells.2,3
The rationale for designing this molecule is based on two assumptions currently under investigation in a clinical study:

- Chromatin is the functional and structural unit of DNA. It is very tightly coiled in its normal state, but is relaxed by HDAC inhibition.\(^1,7\) It is anticipated that vorinostat may make DNA more accessible to the damaging effects of bendamustine.\(^1\)
- Once the DNA is damaged, vorinostat may impair the ability of cancer cells to repair this DNA damage.\(^5\)

Mode of Action

On intravenous administration, EDO-S101 targets and binds to HDAC resulting in chromatin remodelling, modulation of gene expression, inhibition of tumour cell division and induction of cell apoptosis.\(^4\) It also causes DNA fragmentation and cell-cycle arrest resulting in cell death.\(^4,8\) EDO-S101 induces inositol-requiring enzyme activity and subsequent production of key regulatory proteins that increase cancer cell sensitivity to some other chemotherapy agents.\(^4\)

Pre-clinical Results

Initial investigations with EDO-S101 *in vitro* and *in vivo* show that the full function of both molecules has been retained. Repair proteins are less abundant following a strong DNA damage response, and cell death is triggered at lower concentrations of this fusion molecule than with bendamustine alone.\(^1\)

This bi-functional mode of action appears superior to the independent activity of each agent exhibiting a synergy with the result that EDO-S101.\(^1,8\)
• Induces cell cycle arrest
• Causes potent DNA damaging effects
• Impairs DNA repair via homologous recombination.

Furthermore, in myeloma cells isolated from patients, EDO-S101 was able to overcome resistance to alkylators, such as melphalan, and potentiated the activity of agents such as dexamethasone, lenalidomide and proteasome inhibitors.\(^8,9\)

In mice, EDO-S101 showed a more sustained anti-tumour effect than bendamustine and vorinostat given individually or concomitantly.\(^9\)

Clinical Investigation

It is anticipated that the A-DAC, EDO-S101, may have strong activity in haematological and solid malignancies.\(^4\)

The first clinical study in patients with relapsed/refractory haematological malignancies will evaluate the efficacy, safety and pharmacokinetics of EDO-S101.\(^9\)

References